Aktive Nervenfasern im Gehirn werden dynamisch mit Energie versorgt
Spezialisierte Zellen namens Oligodendrozyten reagieren auf die Aktivität der Hirnzellen und versorgen die langen Nervenverbindungen bedarfsgerecht mit Energie, wie UZH-Forschende zeigen. Wird bei Mäusen diese zelluläre Kommunikation unterbrochen, treten mit fortschreitendem Alter Schäden an den Nervenfasern auf, die jenen bei neurodegenerativen Erkrankungen ähneln.
Veröffentlicht: 31.01.2024
Die Gehirnfunktion ist abhängig von der schnellen Weiterleitung elektrischer Signale entlang der Axone. Diese langen Ausläufer der Nervenzellen verbinden Milliarden von Hirnzellen miteinander. Um eine schnelle und effiziente Signalübertragung zu gewährleisten, werden die Axone von speziellen Zellen umhüllt und isoliert: den Oligodendrozyten.
Axon
Axon/-/axon
Das Axon ist der Fortsatz der Nervenzelle, der für die Weiterleitung eines Nervenimpulses zur nächsten Zelle zuständig ist. Ein Axon kann sich vielfach verzweigen, und so eine Vielzahl nachgeschalteter Nervenzellen erreichen. Seine Länge kann mehr als einen Meter betragen. Das Axon endet in einer oder mehreren Synapse(n).
Neuron
Neuron/-/neuron
Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.
Oligodendrozyten
Oligodendrozyten/-/oligodendrocytes
Zellen des Zentralen Nervensystems, die die Myelinscheide um die Nervenzellen bilden und so deren Leitungsgeschwindigkeit erhöhen. Sie gehören zu den Gliazellen.
Oligodendrozyten spüren und reagieren auf elektrische Signale
Nun hat ein Team von Neurowissenschaftlern unter der Leitung von Aiman Saab am Institut für Pharmakologie und Toxikologie der Universität Zürich (UZH) eine neue zentrale Funktion dieser isolierenden Zellen im Mäusegehirn entdeckt: «Die Oligodendrozyten nehmen die Signale aktiver Nervenfasern nicht nur wahr, sondern reagieren auch unmittelbar darauf, indem sie den Verbrauch der primären Energiequelle Glukose beschleunigen», sagt Saab. Sie liefern folglich energiereiche Moleküle an die schnell feuernden Axone, um deren dynamischen Energiebedarf zu decken.
Oligodendrozyten
Oligodendrozyten/-/oligodendrocytes
Zellen des Zentralen Nervensystems, die die Myelinscheide um die Nervenzellen bilden und so deren Leitungsgeschwindigkeit erhöhen. Sie gehören zu den Gliazellen.
Kalium ist Schlüsselsignal für die Energieversorgung
Um zu verstehen, wie aktive Axone mit den sie umgebenden Oligodendrozyten kommunizieren, untersuchten die Forschenden den Sehnerv der Maus. Um nach der Stimulierung das «Feuern» der Nervenfasern zu beobachten, wie die Oligodendrozyten darauf reagieren, verwendeten sie winzige Biosensoren: künstlich hergestellte Proteine, die als mikroskopische Detektoren für molekulare Veränderungen dienen. «Damit konnten wir zeigen, dass Kalium das Schlüsselsignal ist, das die Oligodendrozyten aktiviert. Es wird von den Axonen während des Feuerns freigesetzt», sagt Zoe Looser, die Erstautorin der Studie.
Axon
Axon/-/axon
Das Axon ist der Fortsatz der Nervenzelle, der für die Weiterleitung eines Nervenimpulses zur nächsten Zelle zuständig ist. Ein Axon kann sich vielfach verzweigen, und so eine Vielzahl nachgeschalteter Nervenzellen erreichen. Seine Länge kann mehr als einen Meter betragen. Das Axon endet in einer oder mehreren Synapse(n).
Oligodendrozyten
Oligodendrozyten/-/oligodendrocytes
Zellen des Zentralen Nervensystems, die die Myelinscheide um die Nervenzellen bilden und so deren Leitungsgeschwindigkeit erhöhen. Sie gehören zu den Gliazellen.
Sehnerv
Sehnerv/Nervus opticus/optic nerve
Die Axone (lange faserartige Fortsätze) der retinalen Ganglienzellen bilden den Sehnerv, der das Auge auf der Rückseite an der Papille verlässt. Er umfasst ca. eine Million Axone und hat einen Durchmesser von ca. sieben Millimetern.
Axon
Axon/-/axon
Das Axon ist der Fortsatz der Nervenzelle, der für die Weiterleitung eines Nervenimpulses zur nächsten Zelle zuständig ist. Ein Axon kann sich vielfach verzweigen, und so eine Vielzahl nachgeschalteter Nervenzellen erreichen. Seine Länge kann mehr als einen Meter betragen. Das Axon endet in einer oder mehreren Synapse(n).
Fehlende Kommunikationskanäle führen zu Nervenfaserschäden
Die Forscher identifizierten auch einen spezifischen Kaliumkanal namens «Kir4.1» als Schlüsselakteur bei der Kommunikation zwischen Nervenfasern und Oligodendrozyten. Um dessen Rolle zu untersuchen, verwendete das Team genetisch veränderte Mäuse, denen diese Kanäle in den Oligodendrozyten fehlten. Bei diesen Mäusen wiesen Axone verringerte Laktatwerte auf und reagierten weniger auf den Laktatanstieg bei der Aktivierung. Laktat ist ein wichtiges Nebenprodukt des Glukosestoffwechsels und zeigt an, wie schnell dieser Prozess läuft. «Die fehlenden Kaliumkanäle führten zu einem verminderten Glukosestoffwechsel in den Nervenfasern und schliesslich, wenn die Mäuse alterten, zu schweren Axonschäden», ergänzt Looser.
Oligodendrozyten
Oligodendrozyten/-/oligodendrocytes
Zellen des Zentralen Nervensystems, die die Myelinscheide um die Nervenzellen bilden und so deren Leitungsgeschwindigkeit erhöhen. Sie gehören zu den Gliazellen.
Gen
Gen/-/gene
Informationseinheit auf der DNA. Den Kernbestandteil eines Gens übersetzen darauf spezialisierte Enzyme in so genannte Ribonukleinsäure (RNA). Während manche Ribonukleinsäuren selbst wichtige Funktionen in der Zelle ausführen, geben andere die Reihenfolge vor, in der die Zelle einzelne Aminosäuren zu einem bestimmten Protein zusammenbauen soll. Das Gen liefert also den Code für dieses Protein. Zusätzlich gehören zu einem Gen noch regulatorische Elemente auf der DNA, die sicherstellen, dass das Gen genau dann abgelesen wird, wenn die Zelle oder der Organismus dessen Produkt auch wirklich benötigen.
Axon
Axon/-/axon
Das Axon ist der Fortsatz der Nervenzelle, der für die Weiterleitung eines Nervenimpulses zur nächsten Zelle zuständig ist. Ein Axon kann sich vielfach verzweigen, und so eine Vielzahl nachgeschalteter Nervenzellen erreichen. Seine Länge kann mehr als einen Meter betragen. Das Axon endet in einer oder mehreren Synapse(n).
Wie Alter und Krankheiten die Gesundheit der Nervenfasern beeinflussen
Oligodendrozyten
Oligodendrozyten/-/oligodendrocytes
Zellen des Zentralen Nervensystems, die die Myelinscheide um die Nervenzellen bilden und so deren Leitungsgeschwindigkeit erhöhen. Sie gehören zu den Gliazellen.
Axon
Axon/-/axon
Das Axon ist der Fortsatz der Nervenzelle, der für die Weiterleitung eines Nervenimpulses zur nächsten Zelle zuständig ist. Ein Axon kann sich vielfach verzweigen, und so eine Vielzahl nachgeschalteter Nervenzellen erreichen. Seine Länge kann mehr als einen Meter betragen. Das Axon endet in einer oder mehreren Synapse(n).
Neurodegeneration
Neurodegeneration/-/neurodegeneration
Sammelbegriff für Krankheiten, in deren Verlauf Nervenzellen sukzessive ihre Struktur oder Funktion verlieren, bis sie teilweise sogar daran zugrunde gehen. Vielfach sind falsch gefaltete Proteine der Auslöser – wie etwa bestimmte Formen der Eiweiße Beta-Amyloid und Tau im Falle von Alzheimer. Bei anderen Krankheiten, beispielsweise bei Parkinson oder Chorea Huntington, werden Proteine innerhalb der Neurone nicht richtig abgebaut. In der Folge lagern sich dort toxische Aggregate ab, was zu den jeweiligen Krankheitserscheinungen führt. Während Chorea Huntington eindeutig genetisch bedingt ist, scheint es bei Parkinson und Alzheimer allenfalls bestimmte Ausprägungsformen von Genen zu geben, welche ihre Entstehung begünstigen. Keine dieser neurodegenerativen Erkrankungen kann bisher geheilt werden.
Multiple Sklerose
Multiple Sklerose/Encephalomyelitis disseminata/multiple sclerosis
Eine häufige neurologische Krankheit, die vorwiegend im jungen Erwachsenenalter auftritt. Aus noch ungeklärtem Grund greifen körpereigene Zellen die Myelinscheiden der Nervenzellen an und zerstören diese. Das kann im gesamten zentralen Nervensystem geschehen, weshalb zwei verschiedene Multiple-Sklerose-Patienten an ganz unterschiedlichen Symptomen leiden können. Besonders häufig sind Sehstörungen und Taubheitsgefühle in den Gliedmaßen.
Originalpublikation
Zoe J. Looser, et. al. Oligodendrocyte-axon metabolic coupling is mediated by extracellular K+ and maintains axonal health. Nature Neuroscience. 24 January 2024. DOI: 10.1038/s41593-023-01558-3