Kaliumkanäle als Strategie, um Nervenzellen vor Entzündung und Entmarkung zu schützen

© UMM
Die Fluoreszenzaufnahme zeigt die Kolokalisation von Kir4.1-Kanälen (türkis) auf Oligodendrozyten (blau) und Kv7-Kanälen (gelb) auf Axonen von Nervenzellen. Die Kv7-Kanäle sind dabei von spezifischen Abschnitten der Axone umrandet (rot).

Multiple Sklerose (MS) ist die am weitesten verbreitete chronisch-entzündliche Erkrankung des Zentralnervensystems. Sie ist gekennzeichnet durch eine Entmarkung der die Nervenfasern umkleidenden Myelinschicht, und bei fortschreitender Erkrankung auch die Zerstörung der darunterliegenden Nervenzellen. Im Rahmen einer internationalen Studie haben Wissenschaftler der Neurologischen Klinik der Universitätsmedizin Mannheim federführend, gemeinsam mit Kollegen aus Düsseldorf, Münster, Cambridge und San Francisco, nun Kaliumkanäle entlang der Nervenfasern im ZNS als mögliche Angriffspunkte identifiziert, um gefährdete Neuronen gegen die entzündliche Demyelinisierung im Zuge der MS zu wappnen.

Quelle: Medizinische Fakultät Mannheim der Universität Heidelberg

Veröffentlicht: 04.04.2023

Der neuen Strategie liegt eine faszinierende, aber bisher unbewiesene Hypothese zugrunde, dass ein Hauptfaktor für die Nervenschädigung bei MS eine chronische Übererregbarkeit der Nervenzellen ist: In Tiermodellen der MS und anderen In vivo-Modellen der De- und Remyelinisierung häufen sich Hinweise, dass anfällige Neuronen im Laufe der Zeit aufgrund einer metabolischen Erschöpfung zugrunde gehen, die durch eine chronische Übererregbarkeit verursacht wird. Die Erregbarkeit von Nervenzellen zu normalisieren erscheint daher als erfolgversprechende Strategie, um Neurodegeneration zu verhindern.  

Die erhöhte Erregbarkeit von Nervenzellen ist wahrscheinlich die Folge verschiedener Faktoren, die die Schwelle für die Erzeugung von Aktionspotenzialen im Zusammenhang mit der chronisch-entzündlichen Demyelinisierung senken. Ein Ionenungleichgewicht, das es zu normalisieren gilt, könnte daher ein interessantes therapeutisches Ziel bei MS sein. 

Die die Axone der Nervenzellen umkleidende Myelinschicht wird in regelmäßigem Abstand durch sogenannte Ranvier’sche Schnürringe unterbrochen. Sie dienen der schnelleren Weiterleitung elektrischer Erregungen. Da Kaliumkanäle eine wichtige Rolle dabei spielen, die Erregbarkeit von Nervenzellen an und um die Ranvier’schen Schnürringe zu regulieren, nahmen die Wissenschaftler die entsprechenden Kanäle genauer unter die Lupe: auswärts-gleichrichtende Kaliumkanäle (Kv-Kanäle) der Axone, die Kaliumionen überwiegend von innen nach außen durch die Zellmembran leiten, und einwärts-gleichrichtende Kaliumkanäle (Kir-Kanäle) der die Myelinschicht der Nervenzellen bildenden Oligodendrozyten, die Kaliumionen überwiegend von extrazellulär nach intrazellulär leiten. 

Untersuchungen zur räumlichen und funktionellen Beziehung zwischen Kv7-Kanälen und Kir4.1-Kanälen im gesunden Zustand und unter entzündlich-demyelinisierenden Bedingungen konnten zeigen, dass die Regulation beider Kanäle bei MS und im experimentellen Tiermodell gestört ist. Einen positiven Effekt zeigte die Gabe von Retigabin, eines Wirkstoffs, der spezifisch Kv7-Kanäle öffnet. Das ursprünglich für die Epilepsie entwickelte Medikament Retigabin reduzierte die Übererregbarkeit der Nervenzellen bei Mensch und Tier und verbesserte zumindest im Tiermodell die klinischen Symptome. 

„Wir haben damit einen neuen therapeutischen Ansatz identifiziert, um Nervenzellen pharmakologisch während der Krankheitsentwicklung der MS zu schützen“, sagt Professor Dr. Lucas Schirmer (Universitätsmedizin Mannheim), der zusammen mit Professor Dr. Dr. Sven Meuth (Universitätsklinikum Düsseldorf) und Professor Dr. David Rowitch (University of Cambridge) einer der korrespondierenden Autoren der aktuellen Studie ist.

Die Ergebnisse der Wissenschaftler deuten darauf hin, dass kompensatorische Interaktionen zwischen Neuronen und Oligodendrozyten durch Kv7- und Kir4.1-Kanäle die Widerstandsfähigkeit (Resilienz) von geschädigten Nervenzellen fördern und eine medikamentöse Aktivierung von Kv7-Kanälen eine vielversprechende Strategie sein könnte, um Nervenzellen vor der entzündlichen Demyelinisierung zu schützen.

Multiple Sklerose

Multiple Sklerose/Encephalomyelitis disseminata/multiple sclerosis

Eine häufige neurologische Krankheit, die vorwiegend im jungen Erwachsenenalter auftritt. Aus noch ungeklärtem Grund greifen körpereigene Zellen die Myelinscheiden der Nervenzellen an und zerstören diese. Das kann im gesamten zentralen Nervensystem geschehen, weshalb zwei verschiedene Multiple-​Sklerose-​Patienten an ganz unterschiedlichen Symptomen leiden können. Besonders häufig sind Sehstörungen und Taubheitsgefühle in den Gliedmaßen.

Neuron

Neuron/-/neuron

Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.

Neuron

Neuron/-/neuron

Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.

Neurodegeneration

Neurodegeneration/-/neurodegeneration

Sammelbegriff für Krankheiten, in deren Verlauf Nervenzellen sukzessive ihre Struktur oder Funktion verlieren, bis sie teilweise sogar daran zugrunde gehen. Vielfach sind falsch gefaltete Proteine der Auslöser – wie etwa bestimmte Formen der Eiweiße Beta-​Amyloid und Tau im Falle von Alzheimer. Bei anderen Krankheiten, beispielsweise bei Parkinson oder Chorea Huntington, werden Proteine innerhalb der Neurone nicht richtig abgebaut. In der Folge lagern sich dort toxische Aggregate ab, was zu den jeweiligen Krankheitserscheinungen führt. Während Chorea Huntington eindeutig genetisch bedingt ist, scheint es bei Parkinson und Alzheimer allenfalls bestimmte Ausprägungsformen von Genen zu geben, welche ihre Entstehung begünstigen. Keine dieser neurodegenerativen Erkrankungen kann bisher geheilt werden.

Aktionspotenzial

Aktionspotenzial/-/action potential

In erregbaren Zellen (z. B. Neuronen oder Muskelzellen) findet man sehr schnelle Änderungen des elektrischen Potenzials über der Zellmembran. Dieses Ereignis ist die Grundlage für die Informationsleitung entlang des Axons der Nervenzelle. Das Aktionspotenzial setzt sich entlang der Zellmembran fort und entsteht nach dem Alles-​oder-​Nichts-​Prinzip nur dann, wenn die Zelle ausreichend stark erregt wurde.

Axon

Axon/-/axon

Das Axon ist der Fortsatz der Nervenzelle, der für die Weiterleitung eines Nervenimpulses zur nächsten Zelle zuständig ist. Ein Axon kann sich vielfach verzweigen, und so eine Vielzahl nachgeschalteter Nervenzellen erreichen. Seine Länge kann mehr als einen Meter betragen. Das Axon endet in einer oder mehreren Synapse(n).

Oligodendrozyten

Oligodendrozyten/-/oligodendrocytes

Zellen des Zentralen Nervensystems, die die Myelinscheide um die Nervenzellen bilden und so deren Leitungsgeschwindigkeit erhöhen. Sie gehören zu den Gliazellen.

Originalpublikation

Neuron-oligodendrocyte potassium shuttling at nodes of Ranvier protects against inflammatory demyelination; Hannah Kapell, … , Sven G. Meuth, Lucas Schirmer; Journal of Clinical Investigation (JCI), Volume 133, issue 7
https://doi.org/10.1172/JCI164223

No votes have been submitted yet.

Lizenzbestimmungen

Dieser Inhalt ist unter folgenden Nutzungsbedingungen verfügbar.

BY-NC-SA: Namensnennung, nicht kommerziell, Weitergabe unter gleichen Bedingungen