Nervenzellen mit Energie-Sparprogramm

Dr. Elisa Motori
Dr. Elisa Motori

Dank einer Stoffwechsel-Umstellung können Nervenzellen trotz Schäden an den Mitochondrien funktionstüchtig bleiben.

Quelle: Max-Planck-Institut für Biologie des Alterns

Veröffentlicht: 30.08.2020

Mitochondrien sind die Kraftwerke unserer Zellen. Speziell Nervenzellen benötigen viel Energie und sind deshalb besonders von diesen Organellen abhängig. Bei verschiedenen vererbten aber auch alterungsbedingten neurodegenerative Erkrankungen, wie zum Beispiel Parkinson, können Schäden an den Mitochondrien auftreten. Wissenschaftler des Max-Planck-Instituts für Biologie des Alterns in Köln und Karolinska Institutet in Stockholm haben nun entdeckt, dass Nervenzellen, entgegen der gängigen Glaubenssätze, ihren Stoffwechsel anpassen und somit Schäden von den Mitochondrien abwenden können. Damit können sich diese wichtigen Zellen vor dem Absterben schützen und weiter ihre Aufgaben im Gehirn erfüllen.

Mehr und mehr Untersuchungen zeigen, dass Störungen der Mitochondrien mit verschiedenen neurodegenerativen Erkrankungen wie zum Beispiel Parkinson, Ataxien und peripheren Neuropathien zusammenhängen. Wodurch diese Funktionsstörungen der Mitochondrien verursacht werden, ist im Detail noch nicht bekannt. "Bislang war man der Ansicht, dass Nervenzellen ihren Energiestoffwechsel kaum oder gar nicht an sich wandelnde Bedingungen anpassen können", sagt Elisa Motori, die Hauptautorin der neuen Studie. "Allerdings scheinen einige neurologische Erkrankungen solche mitochondrialen Dysfunktionen über längere Zeiträume tolerieren zu können. Wir haben uns deshalb überlegt, ob diese gestressten Nervenzellen nicht doch ein Stoffwechselprogramm besitzen, mit dem sie das geringere Energieangebot ausgleichen können.“

Zu diesem Zweck haben die Forschenden degenerierende Nervenzellen aus dem Gehirn von Mäusen mit einer neuen Technik isoliert und sämtliche Proteine – das sogenannte Proteom – dieser Nervenzellen analysiert. "Unsere Daten zeigen, dass Nervenzellen ein eigenes, genau koordiniertes Stoffwechselprogramm besitzen, das als Reaktion auf eine mitochondriale Dysfunktion aktiviert wird", erklärt Motori.

Die Wissenschaftler*innen haben darüber hinaus eine Umstellung des Stoffwechsels identifiziert, die sogenannte Anaplerose (hier wird der Krebszyklus zusätzlich mit Stoffwechselintermediaten aufgefüllt), die Nervenzellen gegenüber einer ansonsten rasch fortschreitenden Degeneration unempfindlich macht. Diese Form der Anpassung ist bisher nur in peripheren Geweben - oder in Stützzellen (Gliazellen) im Gehirn vermutet worden. "Wenn wir die Anaplerose blockieren, beschleunigt sich der Abbau der Nervenzellen und die Krankheit verläuft schwerer. Die Krebszyklus-Anaplerose schützt also die Nervenzellen vor Schädigungen", sagt Motori. Diese neuen Erkenntnisse könnten uns dabei helfen, Nervenzellen von Patienten mit mitochondrialen und neurodegenerativen Erkrankungen vor dem Absterben zu bewahren.

Mitochondrien

Mitochondrien/-/mitochondria

Mitochondrien sind Organellen im Inneren einer Zelle, sie werden auch als „Kraftwerk“ der Zellen bezeichnet, da sie diese mit Energie versorgen. Sie haben eine eigene DNA, die nur über die Mutter vererbt wird.

Neuron

Neuron/-/neuron

Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.

Neurodegeneration

Neurodegeneration/-/neurodegeneration

Sammelbegriff für Krankheiten, in deren Verlauf Nervenzellen sukzessive ihre Struktur oder Funktion verlieren, bis sie teilweise sogar daran zugrunde gehen. Vielfach sind falsch gefaltete Proteine der Auslöser – wie etwa bestimmte Formen der Eiweiße Beta-​Amyloid und Tau im Falle von Alzheimer. Bei anderen Krankheiten, beispielsweise bei Parkinson oder Chorea Huntington, werden Proteine innerhalb der Neurone nicht richtig abgebaut. In der Folge lagern sich dort toxische Aggregate ab, was zu den jeweiligen Krankheitserscheinungen führt. Während Chorea Huntington eindeutig genetisch bedingt ist, scheint es bei Parkinson und Alzheimer allenfalls bestimmte Ausprägungsformen von Genen zu geben, welche ihre Entstehung begünstigen. Keine dieser neurodegenerativen Erkrankungen kann bisher geheilt werden.

Neurodegeneration

Neurodegeneration/-/neurodegeneration

Sammelbegriff für Krankheiten, in deren Verlauf Nervenzellen sukzessive ihre Struktur oder Funktion verlieren, bis sie teilweise sogar daran zugrunde gehen. Vielfach sind falsch gefaltete Proteine der Auslöser – wie etwa bestimmte Formen der Eiweiße Beta-​Amyloid und Tau im Falle von Alzheimer. Bei anderen Krankheiten, beispielsweise bei Parkinson oder Chorea Huntington, werden Proteine innerhalb der Neurone nicht richtig abgebaut. In der Folge lagern sich dort toxische Aggregate ab, was zu den jeweiligen Krankheitserscheinungen führt. Während Chorea Huntington eindeutig genetisch bedingt ist, scheint es bei Parkinson und Alzheimer allenfalls bestimmte Ausprägungsformen von Genen zu geben, welche ihre Entstehung begünstigen. Keine dieser neurodegenerativen Erkrankungen kann bisher geheilt werden.

Ataxie

Ataxie/-/ataxia

Ein medizinischer Überbegriff für die Störung oder den Verlust der Bewegungskoordination. Bei einer Zielataxie beispielsweise kann ein gezielter Griff zu einem Gegenstand langsam, verwackelt oder zu schnell erfolgen. Ataxien können Folge von Läsionen oder Degeneration sein.

Gliazellen

Gliazellen/-/glia cells

Gliazellen stellen neben den Neuronen die zweite Gruppe große Gruppe von Zellen im Gehirn. Sie wurden lange Zeit als die inaktiven Elemente des Gehirns, als „Nervenkitt“ bezeichnet. Heute weiss man, dass die verschiedenen Typen von Gliazellen (Astrozyten, Oligodendrozyten und Mikrogliazellen) klar definierte Aufgaben im Nervensystem erfüllen. So reagieren sie z. B. auf Krankheitserreger, spielen eine wichtige Rolle bei der Ernährung der Nervenzellen oder isolieren Nervenfasern. Ihr Anteil im Vergleich zu den Neuronen liegt bei etwas über 50 Prozent.

Originalpublikation

Motori, E., Atanassov, I., Kochan, S.M.V., Folz-Donahue, K., Sakthivelu, V., Giavalisco, P., Toni, N., Puyal, J., and Larsson, N.-G. (2020).
Neuronal metabolic rewiring promotes resilience to neurodegeneration caused by mitochondrial dysfunction. Sci Adv, eaba8271.

 

No votes have been submitted yet.

Tags

Lizenzbestimmungen

Dieser Inhalt ist unter folgenden Nutzungsbedingungen verfügbar.

BY-NC-SA: Namensnennung, nicht kommerziell, Weitergabe unter gleichen Bedingungen