Medikament lindert Autismus-assoziierte Verhaltensformen bei Mäusen

© Jana Tegethoff / HITBR
In der Kulturschale aus Stammzellen programmierte menschliche Gehirnzellen (rot, grün)

Hinter den bei Autismus beobachteten Verhaltensauffälligkeiten steckt eine Vielzahl an genetischen Veränderungen.

Quelle: Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Zentralinstitut für Seelische Gesundheit

Veröffentlicht: 14.02.2023

Wissenschaftlerinnen und Wissenschaftler vom Hector Institut für Translationale Hirnforschung (HITBR)* haben jetzt eine weitere molekulare Ursache für dieses Krankheitsbild gefunden. Der Transkriptionsfaktor MYT1L schützt normalerweise die molekulare Identität von Nervenzellen. Wird er in menschlichen Nervenzellen oder in Mäusen genetisch ausgeschaltet, so kommt es zu den Autismus-typischen Funktionsveränderungen und Symptomen.

Ein Medikament, das Natriumkanäle in der Zellmembran blockiert, kann die Folgen des Ausfalls von MYT1L aufheben und die funktionellen Defekte und Verhaltensauffälligkeiten bei Mäusen lindern.

Das Hector Institut für Translationale Hirnforschung (HITBR) ist eine gemeinsame Einrichtung des Zentralinstituts für Seelische Gesundheit (ZI), des Deutschen Krebsforschungszentrums (DKFZ) und der Hector Stiftung II.

Krankheiten aus dem Autismus-Spektrum (ASS, Autismus-Spektrum-Störungen) äußern sich nicht nur durch Beeinträchtigungen der sozialen Interaktion, Kommunikation, Interessenbildung und durch stereotype Verhaltensmuster. Damit einher gehen bei den Betroffenen häufig weitere Auffälligkeiten wie etwa Epilepsie oder Hyperaktivität.

Wissenschaftler suchen intensiv nach den molekularen Auffälligkeiten, die zu dieser komplexen Entwicklungsstörung beitragen. Eine Vielzahl genetischer Faktoren, die Einfluss auf die molekularen Programme der Nervenzellen nehmen, wurde bereits mit der Entstehung von Autismus in Verbindung gebracht.

Moritz Mall vom Hector Institut für Translationale Hirnforschung (HITBR) erforscht bereits seit langem die Rolle des Proteins MYT1L bei verschiedenen neuronalen Erkrankungen. Das Protein ist ein so genannter Transkriptionsfaktor, der darüber entscheidet, welche Gene in der Zelle abgelesen werden und welche nicht. Fast alle Nervenzellen des Körpers bilden MYT1L über ihre gesamte Lebensdauer hinweg.

Mall hatte bereits vor einigen Jahren gezeigt, dass MYT1L die Identität von Nervenzellen schützt, indem es andere Entwicklungsprogramme unterdrückt, die eine Zelle beispielsweise in Richtung Muskel oder Bindegewebe programmieren. Mutationen in MYT1L wurden bei mehreren neurologischen Erkrankungen gefunden, etwa bei Schizophrenie und Epilepsie, aber auch bei Fehlbildungen des Gehirns. Welche Rolle genau der „Hüter der neuronalen Identität“ bei der Entstehung einer ASD spielt, prüften Mall und sein Team in ihrer aktuellen Arbeit, die vom Europäischen Forschungsrat ERC gefördert wird. Dazu schalteten sie MYT1L genetisch aus – sowohl in Mäusen als auch in menschlichen Nervenzellen, die im Labor aus umprogrammierten Stammzellen gewonnen worden waren.

Der Ausfall von MYT1L führte in Nervenzellen von Maus und Mensch zu einer elektrophysiologischen Hyperaktivierung und beeinträchtigt damit die Nervenfunktion. Mäuse, denen MYT1L fehlte, wiesen Hirnanomalien auf, etwa eine dünnere Großhirnrinde. Die Tiere zeigten außerdem gleich mehrere ASS-typische Verhaltensänderungen wie soziale Defizite oder Hyperaktivität.

An den MYT1L-defizienten Nervenzellen fiel besonders auf, dass sie einen Natrium-Kanal im Übermaß produzierten, der normalerweise hauptsächlich von Herzmuskelzellen gebildet wird. Diese porenförmigen Proteine gewähren Natriumionen Durchlass durch die Zellmembran und sind damit für die elektrische Leitfähigkeit und damit auch für das Funktionieren der Zellen entscheidend. Produziert eine Nervenzelle zu viele dieser Kanalproteine, kann eine elektrophysiologische Hyperaktivierung die Folge sein.

In der Medizin werden bereits seit langem Medikamente eingesetzt, die Natriumkanäle blockieren. Dazu zählt etwa der Wirkstoff Lamotrigin, der epileptischen Anfällen vorbeugen soll. Wurden die MYT1L-defizienten Nervenzellen mit Lamotrigin behandelt, so normalisierte sich ihre elektrophysiologische Aktivität wieder. Bei Mäusen konnte das Medikament sogar die ASS-assoziierten Verhaltensmuster wie die Hyperaktivität eindämmen.

„Offenbar kann eine medikamentöse Behandlung im Erwachsenenalter die Fehlfunktionen der Gehirnzellen lindern und damit den Autismus-typischen Verhaltensauffälligkeiten entgegenwirken – selbst nachdem die Abwesenheit von MYT1L bereits während der Entwicklungsphase des Organismus die Hirnentwicklung beeinträchtigt hat“, erklärt Moritz Mall. Noch allerdings beschränken sich die Ergebnisse auf die Studien an Mäusen, klinische Untersuchungen an Patienten mit Erkrankungen aus dem ASS-Spektrum liegen noch nicht vor. Erste klinische Studien dazu sind in der frühen Planungsphase.

Neuron

Neuron/-/neuron

Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.

Gen

Gen/-/gene

Informationseinheit auf der DNA. Den Kernbestandteil eines Gens übersetzen darauf spezialisierte Enzyme in so genannte Ribonukleinsäure (RNA). Während manche Ribonukleinsäuren selbst wichtige Funktionen in der Zelle ausführen, geben andere die Reihenfolge vor, in der die Zelle einzelne Aminosäuren zu einem bestimmten Protein zusammenbauen soll. Das Gen liefert also den Code für dieses Protein. Zusätzlich gehören zu einem Gen noch regulatorische Elemente auf der DNA, die sicherstellen, dass das Gen genau dann abgelesen wird, wenn die Zelle oder der Organismus dessen Produkt auch wirklich benötigen.

Autismus

Autismus/-/autism

Gravierende Entwicklungsstörung, die sich oft in reduzierten sozialen Fähigkeiten, verminderter Kommunikation und stereotypem Verhalten ausdrückt.

Gen

Gen/-/gene

Informationseinheit auf der DNA. Den Kernbestandteil eines Gens übersetzen darauf spezialisierte Enzyme in so genannte Ribonukleinsäure (RNA). Während manche Ribonukleinsäuren selbst wichtige Funktionen in der Zelle ausführen, geben andere die Reihenfolge vor, in der die Zelle einzelne Aminosäuren zu einem bestimmten Protein zusammenbauen soll. Das Gen liefert also den Code für dieses Protein. Zusätzlich gehören zu einem Gen noch regulatorische Elemente auf der DNA, die sicherstellen, dass das Gen genau dann abgelesen wird, wenn die Zelle oder der Organismus dessen Produkt auch wirklich benötigen.

Neuron

Neuron/-/neuron

Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.

Originalpublikation

Bettina Weigel, Jana F. Tegethoff, Sarah D. Grieder, Bryce Lim, Bhuvaneswari Nagarajan, Yu-Chao Liu, Jule Truberg, Dimitris Papageorgiou, Juan M. Adrian-Segarra, Laura K. Schmidt, Janina Kaspar, Eric Poisel, Elisa Heinzelmann, Manu Saraswat, Marleen Christ, Christian Arnold, Ignacio L. Ibarra, Joaquin Campos, Jeroen Krijgsveld, Hannah Monyer, Judith B. Zaugg, Claudio Acuna and Moritz Mall: MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention
Molecular Psychiatry; 2023, https://doi.org/10.1038/s41380-023-01959-7

No votes have been submitted yet.

Tags

Lizenzbestimmungen

Dieser Inhalt ist unter folgenden Nutzungsbedingungen verfügbar.

BY-NC-SA: Namensnennung, nicht kommerziell, Weitergabe unter gleichen Bedingungen