Zellen der Zukunft: Möglichkeit zur gezielten Reprogrammierung

© Tsunetoshi Nakatani / Helmholtz Munich
Die Mikroskopieaufnahme zeigt die DNA in Blau und die replizierten Bereiche in Rot.

Um Leben von einer Zelle auf eine neue zu übertragen, muss die genetische Information mittels eines Prozesses namens DNA-Replikation vervielfältigt werden. Das geschieht nicht nur durch das „Kopieren“ genetischer Informationen; vielmehr erfordert es eine präzise Abfolge zahlreicher molekularer Ereignisse. Forschende um Prof. Maria-Elena Torres-Padilla von Helmholtz Munich haben kürzlich einen speziellen Aspekt dieses Prozesses namens „Replication Timing“ (RT) und dessen Besonderheiten bei der Entstehung von neuem Leben aufgedeckt. Die neuen Ergebnisse sind nun in Nature veröffentlicht.

Quelle: Helmholtz Zentrum München

Veröffentlicht: 20.12.2023

Der Prozess des „Replication Timing“ (RT) der DNA bezieht sich auf die spezifischen Zeitpunkte, zu denen verschiedene Abschnitte unseres genetischen Codes dupliziert werden. Forscher:innen des Instituts für Epigenetik und Stammzellen bei Helmholtz Munich haben eine Technik namens „Repli-seq“ implementiert, um die enge Verbindung zwischen RT und der Anpassungsfähigkeit von Zellen, der Zellplastizität, zu erforschen. Darüber hinaus konnten sie einen neuen Zusammenhang zwischen dem Replication Timing und dem Prozess, wie Gene sich innerhalb des Zellkerns zu dreidimensionalen Strukturen falten, aufdecken.

Angefangen mit der frühesten Entwicklungsstufe eines Embryos, der Zygote – dem Beginn alles Lebens – haben Wissenschaftler:innen eine RT-Karte von dieser Einzelzellenstufe bis zur Phase erstellt, in der der Embryo sich als Blastozsyte in der Gebärmutter einnistet. Im Stadium des Einzelzellembryos ist das RT wenig strukturiert, was auf eine flexible Genomduplikation in diesen frühen Zellen hindeutet. Nach dem Vierzellstadium wird jedoch das RT definierter. Diese Veränderungen im RT entsprechen den kontinuierlichen Veränderungen an der DNA durch Proteine, den sogenannten Chromatinmarkierungen, die die Aktivität der Gene und ihre Bedeutung für die Funktionen der Zelle anzeigen.

Maria-Elena Torres-Padilla, Letztautorin der Studie, erklärt: „Die Erkenntnisse sind bemerkenswert und zeigen uns, dass die frühen embryonalen Zellen ein sehr ‚flexibles‘ Programm zur Genomduplikation haben. Die frühen Zellen sind zudem totipotent, das heißt, sie können sich zu jeder einzelnen Zelle in unserem Körper entwickeln. Das, was wir herausgefunden haben, könnte der Grund dafür sein, warum diese Zellen in der Lage sind, sämtliche Zelltypen im Körper zu generieren.“ Die neuen Erkenntnisse über die DNA-Replikation eröffnen Möglichkeiten zur gezielten Reprogrammierung von Zellen in der Zukunft. Dr. Tsunetoshi Nakatani, Erstautor der Studie, fügt hinzu: „Wir wollen in Zukunft die Zellidentität ändern, indem wir ein strukturiertes Replication-Timing-Programm in ein flexibleres Umwandeln.“

Die RNA-Polymerase, das Enzym, welches den genetischen Code der DNA in RNA umschreibt, ist ein wichtiger Akteur im RT-Programm. Mit diesem Wissen wird es möglich sein, das RT in Zellen zu manipulieren. Das Forschungsteam hat entdeckt, dass die dreidimensionale Struktur des Genoms sich zuerst formt und erst danach das RT-Programm etabliert wird. Dies ist ein Hinweis darauf, dass die Art und Weise, wie unser Genom in den dreidimensionalen Raum des Zellkerns passt, einen Einfluss auf die Flexibilität des RT-Programms hat.

Zusammenfassend ist das RT-Programm der DNA ein faszinierendes Puzzleteil im Zyklus des Lebens. Der präzise Prozess der genetischen Replikation ist eng mit der Fähigkeit der Zellen des frühen Embryos verbunden, alle Zelltypen in unserem Körper zu erzeugen. Mit fortschreitender Forschung erlangen wir eine weitreichende Erkenntnis über die essenzielle Weitergabe von Leben, von Zelle zu Zelle, von Organismus zu Organismus, sowie über die Fähigkeit einer Zelle, einen neuen Körper zu erschaffen.

Epigenetik

Epigenetik/-/epigenetics

Mit dem Begriff „Epigenetik“ fassen Biologen alle Prozesse zusammen, die das Erscheinungsbild eines Organismus über die Regulation von Genaktivitäten beeinflussen, ohne dass die Abfolge der DNA-​Bausteine verändert wird. Dies geschieht beispielsweise dadurch, dass die Zelle bestimmte Abschnitte der Erbsubstanz chemisch modifiziert und sie auf diese Weise dauerhaft oder vorübergehend stilllegt. So haben Frauen zwar in jeder Körperzelle zwei X-​Chromosomen vorliegen; jeweils eines davon ist aber so fest verpackt, dass es nicht in Aktion tritt.

Gen

Gen/-/gene

Informationseinheit auf der DNA. Den Kernbestandteil eines Gens übersetzen darauf spezialisierte Enzyme in so genannte Ribonukleinsäure (RNA). Während manche Ribonukleinsäuren selbst wichtige Funktionen in der Zelle ausführen, geben andere die Reihenfolge vor, in der die Zelle einzelne Aminosäuren zu einem bestimmten Protein zusammenbauen soll. Das Gen liefert also den Code für dieses Protein. Zusätzlich gehören zu einem Gen noch regulatorische Elemente auf der DNA, die sicherstellen, dass das Gen genau dann abgelesen wird, wenn die Zelle oder der Organismus dessen Produkt auch wirklich benötigen.

Originalpublikation

Nakatani et al. (2023): The establishment of a replication timing program after fertilization
reveals organizing principles of the mammalian genome. Nature. DOI: 10.1038/s41586-023-06872-1

No votes have been submitted yet.

Lizenzbestimmungen

Dieser Inhalt ist unter folgenden Nutzungsbedingungen verfügbar.

BY-NC-SA: Namensnennung, nicht kommerziell, Weitergabe unter gleichen Bedingungen