Matrix Remodeled: Der Einfluss der Zellumgebung auf das Sehvermögen
Die Verarbeitung von visuellen Informationen beginnt mit einer zielgerichteten und balancierten Kommunikation zwischen Nervenzellen in der Netzhaut über Synapsen. Proteine in der Umgebung von Nervenzellen spielen eine wichtige Rolle bei der Entwicklung, Reifung und Funktion dieser Synapsen. Ein Forschungsteam der Ruhr-Universität Bochum konnte gemeinsam mit weiteren Arbeitsgruppen zeigen, dass der kombinierte Verlust von vier Proteinen zu einer schwerwiegenden Beeinträchtigung der Funktion der Netzhaut, einer verminderten visuellen Bewegungsverarbeitung sowie deutlichen synaptischen Veränderungen führt.
Veröffentlicht: 05.02.2024
Im Fokus der Untersuchungen des Forschungsteams standen die vier extrazellulären Matrixproteine Brevican, Neurocan, Tenascin-C und Tenascin-R, die in der Zellumgebung von Nervenzellen der Netzhaut vorkommen. „Ihre genaue Aufgabe in der Netzhaut war bislang noch nicht hinreichend untersucht“, erklärt Jacqueline Reinhard-Recht. Die Forschenden untersuchten daher die Sehfunktion von sogenannten Knockout-Mäusen, die genetisch so verändert waren, dass ihr Körper die vier Proteine nicht herstellen konnte.
Durch Elektroretinogramm-Analysen konnte das Forschungsteam zeigen, dass Stäbchen-Fotorezeptoren und Bipolarzellen in den Knockout-Mäusen funktionelle Defizite in der visuellen Verarbeitung aufweisen. „Interessanterweise konnten wir bei den Knockout-Mäusen zusätzlich deutliche Einschränkungen in der visuellen Bewegungsverarbeitung im Vergleich zu Kontrolltieren feststellen“, so Jacqueline Reinhard-Recht. Mäuse, denen nur die Proteine Tenascin-C oder Tenascin-R fehlen, zeigen zwar ebenfalls Einbußen in der visuellen Bewegungsverarbeitung, allerdings deutlich schwächere. „Dies zeigt, dass der kumulative Verlust von vier Matrixproteinen die optomotorischen Einschränkungen verstärkt“, sagt die Forscherin.
Neuron
Neuron/-/neuron
Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.
Netzhaut
Netzhaut/Retina/retina
Die Netzhaut oder Retina ist die innere mit Pigmentepithel besetzte Augenhaut. Die Retina zeichnet sich durch eine inverse (umgekehrte) Anordnung aus: Licht muss erst mehrere Schichten durchdringen, bevor es auf die Fotorezeptoren (Zapfen und Stäbchen) trifft. Die Signale der Fotorezeptoren werden über den Sehnerv in verarbeitende Areale des Gehirns weitergeleitet. Grund für die inverse Anordnung ist die entwicklungsgeschichtliche Entstehung der Netzhaut, es handelt sich um eine Ausstülpung des Gehirns.
Die Netzhaut ist ca 0,2 bis 0,5 mm dick.
Gen
Gen/-/gene
Informationseinheit auf der DNA. Den Kernbestandteil eines Gens übersetzen darauf spezialisierte Enzyme in so genannte Ribonukleinsäure (RNA). Während manche Ribonukleinsäuren selbst wichtige Funktionen in der Zelle ausführen, geben andere die Reihenfolge vor, in der die Zelle einzelne Aminosäuren zu einem bestimmten Protein zusammenbauen soll. Das Gen liefert also den Code für dieses Protein. Zusätzlich gehören zu einem Gen noch regulatorische Elemente auf der DNA, die sicherstellen, dass das Gen genau dann abgelesen wird, wenn die Zelle oder der Organismus dessen Produkt auch wirklich benötigen.
Bipolarzellen
Bipolarzelle/-/bipolar cell
Die Bipolarzelle ist ein bipolares Neuron, also ein Neuron mit einem Axon und einem Dendriten das in der mittleren Schicht der Netzhaut liegt. Es übermittelt die sensorische Information von den Photorezeptoren zu den Ganglienzellen.
Matrix-Remodellierung und Ungleichgewicht in der synaptischen Signalisierung
Untersuchungen der Netzhaut der Knockout-Mäuse belegten außerdem Veränderungen verschiedener Matrixmoleküle und Synapsen. „Insbesondere zeigte sich ein Ungleichgewicht von hemmenden und erregenden Synapsen“, so Jacqueline Reinhard-Recht. „Insgesamt weisen die Forschungsdaten darauf hin, dass die vier Matrixproteine Brevican, Neurocan, Tenascin-C und Tenascin-R wichtige Modulatoren der synaptischen Signalisierung in der Netzhaut sind.“
Die Forschungsergebnisse tragen dazu bei, die komplexen molekularen Mechanismen der visuellen Verarbeitung deutlich besser zu verstehen. Zukünftig könnten diese Erkenntnisse neue Ansätze für die Entwicklung therapeutischer Interventionen bei Störungen der Sehfunktion von Patientinnen und Patienten bieten.
Netzhaut
Netzhaut/Retina/retina
Die Netzhaut oder Retina ist die innere mit Pigmentepithel besetzte Augenhaut. Die Retina zeichnet sich durch eine inverse (umgekehrte) Anordnung aus: Licht muss erst mehrere Schichten durchdringen, bevor es auf die Fotorezeptoren (Zapfen und Stäbchen) trifft. Die Signale der Fotorezeptoren werden über den Sehnerv in verarbeitende Areale des Gehirns weitergeleitet. Grund für die inverse Anordnung ist die entwicklungsgeschichtliche Entstehung der Netzhaut, es handelt sich um eine Ausstülpung des Gehirns.
Die Netzhaut ist ca 0,2 bis 0,5 mm dick.
Synapse
Synapse/-/synapse
Eine Synapse ist eine Verbindung zwischen zwei Neuronen und dient deren Kommunikation. Sie besteht aus einem präsynaptischen Bereich – dem Endknöpfchen des Senderneurons – und einem postsynaptischen Bereich – dem Bereich des Empfängerneurons mit seinen Rezeptoren. Dazwischen liegt der sogenannte synaptische Spalt.
Originalpublikation
Jacqueline Reinhard et al.: Neural Extracellular Matrix Regulates Visual Sensory Motor Integration, in: iScience, 2024, DOI: 10.1016/j.isci.2024.108846, https://www.sciencedirect.com/science/article/pii/S2589004224000671